Heavy Metal Removal from Water and Wastewater Using Raw and Modified Diatomite (TECHNICAL NOTE)

نویسندگان

  • P. Moslehi Chemical & Petroleum Engineering, Sharif University of Technology
  • P. Nahid Chemical & Physic Emgineering, Sharif University of Technology
چکیده مقاله:

heavy metal removal from water and wastewater was investigated by using raw and modified diatomite from Iranian mines. Modification of diatomite was done by impregnating the diatomite surface with 0.35 g of manganese oxide in one gram of diatomite. This modified diatomite was named Mn-Diatomite. The surface area measurements for Mn-diatomite showed a 2.2 fold increase, hence higher removal capacity for the heavy metals. The results of the removal showed an increase in adsorption capacity which was for Pb2+ about 40 mg/g, for Ni2+ about 34mg/g and for Cu2+ about 33mg/g. The filtration quality of diatomite was significantly enhanced with surface modification by manganese oxide.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heavy metal removal from wastewater using various adsorbents: a review

Heavy metals are discharged into water from various industries. They can be toxic or carcinogenic in nature and can cause severe problems for humans and aquatic ecosystems. Thus, the removal of heavy metals fromwastewater is a serious problem. The adsorption process is widely used for the removal of heavy metals from wastewater because of its low cost, availability and eco-friendly nature. Both...

متن کامل

Removal of Escherichia Coli and Heavy Metals from Wastewater Using Silver-modified Clinoptilolite

The aim of this study was to investigate the removal of Escherichia coli and heavy metals (Pb, Cd 2+ and Zn ) from wastewater using silver-modified clinoptilolite under different experimental conditions through the combined disinfection of pathogenic microorganisms by the silver ions and sorption of heavy metals on clinoptilolite. Batch experiments were conducted to look at the effects of initi...

متن کامل

Analysis of Carbonated Biosorbents Application in Heavy Metal Removal from Synthetic Wastewater

Purpose: This study aimed to analyze the effects of removal of hexavalent Chromium using carbonated almond green hulls. In the present study, derived carbon fromalmond green hulls of zonal district of Iran were used to remove hexavalent Chromium from Synthetic wastewater. Materials and Methods: The effects of pH (2-10), Adsorbent dose (2-24 g/L), Cr (VI) concentration (10-100 mg/L), Contact...

متن کامل

Heavy Metal Contaminants Removal from Wastewater Using the Potential Filamentous Fungi Biomass: A Review

The soil and water contaminations are frequently occurred by toxic heavy metals and organic pollutants as a consequence of human activities become a key concern in environmental and health problem. Several toxic metals (Cd, Cu, Hg, Pb, Mn, As, Ni, Zn, etc.) from industrial wastewater and other human activities are directly or indirectly released into the environment. Unlike organic contaminants...

متن کامل

Removal Efficiency of Nitrogen, Phosphorus and Heavy Metal by Intermittent Cycle Extended Aeration System from Municipal Wastewater (Yazd-ICEAS)

Introduction: Sequential batch reactor (SBR) is one of the modified biological treatment systems which is able to remove BOD5, Nitrogen, and phosphorus from wastewater. The object of this study is to determine the removal efficiency of nitrogen, phosphorus, and heavy metals from municipal wastewater by the advanced SBR system. Materials and Methods: This descriptive-analytical and cross-sectio...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 20  شماره 2

صفحات  141- 146

تاریخ انتشار 2007-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023